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Introduction

 Virtual Windtunnel: Virtual reality for
the visualization of CFD simulations

—volumes of vector and scalar data on
complex meshes

— pre-computed files
—variety of visualization techniques
costreamlines
coisosurfaces
cocontour planes
cogfC...
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The Application Task

* Exploration of spatially complex
simulated phenomena in 3D volume

* Different users looking for different
things

—vortical structure
— pressure distribution
—overall sense of flow

* Ease of use with many capabilities
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Primary Challenges

- High performance
— computationally intensive

« Versatile interface

- Very large amounts of data (> 200 GB)

. Extensibility to new interfaces and
capabilities

- Conservative user community
+ Distributed operation
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Initial Choices
(not an historical account)

* Support a variety of direct manipulation
interfaces

—any visual display with sufficient resolution/comfort
~disqualifies head-mounts
—any user input technology

* Place all control within environment
* Decouple computation and interaction
* All data resident in memory

* Use an object-oriented approach, allows easy
addition
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Initial Choices: User Control

- Based on direct manipulation

- Restrict to two active gestures
—grab and point

 Reject “direct manipulation
everywhere”

—very crowded scenes
—many visualizations move

- Use “visualization control tools
—groups visualizations in a natural way
—metaphors from real wind tunnels
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Implementation: Software
Design

* Implemented in C++ and openGL
* Strong encapsulation

—each object manages all aspects of itself

—Specified high-level interface between
objects

* User interacts with tool objects

—Some tools control visualizations (vtools)
—Some tools control environment

* Visualizations access data object(s)
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Class Hierarchy

 Tools and visualizations are
environment objects

—managed by environment list object
- Human(s) and data are special global

objects
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Visualizations

* Vector visualization
—Streamlines, etc

* Scalar visualization
—(local) isosurfaces
—cutting/contour planes
—color-mapped objects
—grid planes

* Vector and Scalar visualization
—hnumerical values
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Visualization control tools
(vtools)

Viools contain emitters of visualizations
— emitter can emit up to five visualization types
Sample point (single emitter)

Rake (line of emitters) J_N//>

—

Plane (2D array of emitters)
—single emitter for cutting/contour plane
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Non-Direct-Manipulation
_ Visualizations

* Global Visualizations
—controlled via menu and sliders
* Pre-computed graphics data

—allows much larger data sets to be non-
interactively viewed

>€.g. results of batch visualizations
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Other interface tools

» Pop-up menus for command selection
—“point in space” paradigm
— hierarchical
—acts on current vtool
—depends on current vtool
. Sliders to control parameters of
environment/current vtool
-1D, 2D, 3D
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Extensibility: Adding a
Visualization

* fill in compute() and draw() routines
according to template

—interaction with vtools happens

“automatically”: Managed at higher level of
class hierarchy

—Uuse of some obtuse calls required,
examples in template

* developer only needs to know how to
compute and draw visualization

—uses local data supplied by vtools
—does not need to understand rest of VWT
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Extensibility: Adding a vtool

. fill in find(), grab(), and draw() routines
according to template

—find() and grab() use human object as input

—developer determines what “find” and “grab”
mean

—requires somewhat deeper knowledge of vwt

e« Success
—several visualizations have been added
by colleagues and summer students
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Environment Control

* Control commands come from severa]
sources

—menus, sliders, startup scripts, keyboard
—future: voice control, text input
* Command and Actuator classes

—Command encapsulates action of
command

AP/ is text and value based

— Actuator is a subclass of tool which
contains a command

—add a command and assign it to an
actuator
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Implementation: Run-Time
Architecture

« Interaction > 10 fps, < 0.1 sec latency
—both display and control

- Computation > 2 fps < 0.5 sec latency
—determined by user

- Implies that interaction and
computation take place in two
asynchronous process groups

—issues of communication and
synchronization
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Overall Run-Time Architecture

Graphics Process Group

‘ Computation

Process

Child Main Group

Graphics Graphics | Data
Process and Buffers
for 2nd Interaction
Pipeline Process \
" 4
Synchronization
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Computation Process Group

- Parallelize across “non-parallel”
visualizations

— streamlines, iterative isosurfaces, etc.
—no attempt to load-balance

« Allow “internally parallel”
visualizations

—global isosurfaces

 So there is a parallel and non-parallel
phase
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Graphics Process Group

* Multi-processed to Support multiple
graphics pipelines
* Includes sampling of I/0 devices

* Includes setting of human states

—current graphics transformations
—location of human “parts”

—current gesture(s)
* Processing of user input
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Computation-Graphics
Communication

« Many demands
— efficiency, simultaneity, reversible time...
«g.g. time stops, one visualization moved

- Handle on an object-by-object basis
— communication buffers for each object

—use various senses of time to choose
buffer

 Provide API to hide this complexity

« Converts gracefully to distributed
operation
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Visualization Computation

* User specifies the desired
computational frame rate

—does not effect display/interaction frame
rate (one hopes)

* VWT distributes specified frame time
over visualizations

—non-trivial

* Each visualization determines how to
do best job in given time

—time-critical computing
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Implementation: Display

3D presence very important

Immersion less important

— users often relate to simulation as model
soimmersive workbench
«“fishtank” VR display

 Display quality very important
« Comfort very important

Work at many scales
—build into navigation paradigm
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Implementation: User control

* Support both 3D and 2D manipulation
—trackers and mice

—find() and grab() in tools come in both 2D
and 3D versions

* Maintain the same interface for all
devices

—menus in environment even when in
workstation/mouse mode

* Workstation/mouse mode popular
—fast, cheap, and in control
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Near Future

- Remove data-in-memory limitation
through very fast access from disk

—requires files in special format
—active research area in our group

- Problem when there are a large number
of widgets

—explore methods of grouping
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Unresolved Issues: Evaluation

* Large System Evaluation IS very
difficult

—cCan test pieces, but this does not inform
how pieces work together

—can test whole system, but don’t have
sense of what in particular is good/bad

—problem is one of high dimensionality
* User feedback is best
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